ar X iv : m at h - ph / 0 40 90 74 v 2 2 5 Ja n 20 05 SCHRÖDINGER OPERATORS WITH FEW BOUND STATES

نویسنده

  • BARRY SIMON
چکیده

We show that whole-line Schrödinger operators with finitely many bound states have no embedded singular spectrum. In contradistinction, we show that embedded singular spectrum is possible even when the bound states approach the essential spectrum exponentially fast. We also prove the following result for oneand two-dimensional Schrödinger operators, H, with bounded positive ground states: Given a potential V , if both H ± V are bounded from below by the ground-state energy of H, then V ≡ 0.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 20 10 06 v 2 1 5 Ja n 20 02 Quasi - classical versus non - classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials

We consider the Schrödinger operator H on L 2 (R 2) or L 2 (R 3) with constant magnetic field, and electric potential V which typically decays at infinity exponentially fast or has a compact support. We investigate the asymptotic behaviour of the discrete spectrum of H near the boundary points of its essential spectrum. If the decay of V is Gaussian or faster, this behaviour is non-classical in...

متن کامل

ar X iv : 0 90 5 . 09 74 v 1 [ m at h - ph ] 7 M ay 2 00 9 Symmetries and resonance sets for δ ′ - interactions July 20 , 2009

The symmetry properties of the family of δ ′-interactions with a resonant non-zero transparency resulting in non-separated states are discussed. It is shown that the connection matrix for these physically motivated interactions and the corresponding family of self-adjoint extensions can be constructed in a self-consistent way if the product δ ′ (x)ψ(x), where ψ(x) is a discontinuous wavefunctio...

متن کامل

ar X iv : m at h - ph / 9 90 70 23 v 1 2 8 Ju l 1 99 9 EIGENFUNCTIONS , TRANSFER MATRICES , AND ABSOLUTELY CONTINUOUS SPECTRUM OF ONE - DIMENSIONAL SCHRÖDINGER OPERATORS

In this paper, we will primarily discuss one-dimensional discrete Schrödinger operators (hu)(n) = u(n + 1) + u(n − 1) + V (n)u(n) (1.1D) on ℓ 2 (Z) (and the half-line problem, h + , on ℓ 2 ({n ∈ Z | n > 0}) ≡ ℓ 2 (Z +)) with u(0) = 0 boundary conditions. We will also discuss the continuum analog (Hu)(x) = −u ′′ (x) + V (x)u(x) (1.1C) on L 2 (R) (and its half-line problem, H + , on L 2 (0, ∞) wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008